4 Channel 500MSPS DDS with 10-bit DACs

Preliminary Technical Data

FEATURES

Four synchronized DDS channels @ 500 MSPS
Independent frequency / phase / amplitude control between all channels
Matched latencies for Freq, Phase, and Amplitude changes
Excellent channel to channel isolation
Frequency sweeping capability
Up to 16 levels of modulation (pin selectable)
Individually programmable DAC full scale currents
Four integrated 10-bit D/A converters(DACs)
32-bit frequency tuning resolution
14-bit phase offset resolution
10-bit output amplitude scaling resolution
Serial I/O Port(SPI) with enhanced data throughput

Software/Hardware controlled power-down
Dual supply operation (1.8 V DDS core / 3.3 V serial I/O)
Built-in synchronization for multiple devices
Selectable REF_CLK multipier(PLL) 4x to 20x (bypassable)
Selectable REF_CLK crystal operation
56 pin LFCSP package

APPLICATIONS

Agile L.O. frequency synthesis
Phased array radar / sonar
Instrumentation
Synchronized clocking
RF source for AOTF

FUNCTIONAL BLOCK DIAGRAM

Figure 1 AD9959 Block Diagram
Rev. PrB
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD9959-SPECIFICATIONS

Table 1. Unless otherwise noted, AVDD, DVDD $=1.8 \mathrm{~V} \pm 5 \%$, DVDD_I/O $=3.3 \mathrm{~V} \pm 5 \%, \mathrm{R}_{\mathrm{sET}}=1.96 \mathrm{k} \Omega$, External Reference Clock Frequency $=\mathbf{5 0 0}$ MSPS (REF_CLK multiplier bypassed)

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
REF CLOCK INPUT CHARACTERISTICS					REF_CLK inputs must be AC coupled due to internal biasing
Frequency Range					
REF_CLK Multiplier bypassed	0		500	MHz	
REF_CLK Multiplier enabled at $4 x$ (min)	25		125	MHz	
REF_CLK Multiplier enabled at 20x(max)	5		25	MHz	
Internal VCO range w/ REF_CLK multiplier enabled	100		500	MHz	
Crystal REF_CLK source mode	20		30	MHz	
Input Power Sensitivity	-15		3	dBm	External 50 ohm termination
Input voltage level		400		mV	
Input Capacitance		3		pF	
Input Impedance		1500		ohms	
Duty Cycle w/ REF_CLK Multiplier bypassed		50		\%	
Duty Cycle w/ REF_CLK Multiplier enabled	35		65	\%	
CLK Mode Select logic 1 Voltage	1.25			V	Not a 3.3V digital input
CLK Mode Select logic 0 Voltage			0.6	V	Not a 3.3V digital input
DAC OUTPUT CHARACTERISTICS					Must be referenced to AVDD
Resolution			10	Bits	
Full Scale Ouput Current		10		mA	
Gain Error	-10		10	\%FS	
Output Offset			0.6	uA	
Differential Nonlinearity	-0.5		0.5	LSB	
Integral Nonlinearity	-1		1	LSB	
Output Capactiance		5		pF	
Voltage Compliance Range	$\begin{gathered} \text { AVDD- } \\ 0.50 \end{gathered}$		$\begin{aligned} & \text { AVDD } \\ & +0.50 \end{aligned}$	V	
Channel to Channel Isolation		60		dB	
Channel to Channel amplitude matching error			2	\%	
WIDEBAND SFDR					Wideband SFDR defined as DC to Nyquist
1-20 MHz Analog Out		-65		dBc	
20-60 MHz Analog Out		-62		dBc	
60-100 MHz Analog Out		-59		dBc	
100-150 MHz Analog Out		-56		dBc	
150-200 MHz Analog Out		-54		dBc	
NARROWBAND SFDR					
1.1 MHz Analog Out (+/-10kHz)		-90		dBc	
1.1 MHz Analog Out (+/- 50kHz)		-88		dBc	
1.1 MHz Analog Out (+/-250kHz)		-86		dBc	
1.1 MHz Analog Out (+/-1MHz)		-85		dBc	
15.1 MHz Analog Out (+/-10kHz)		-90		dBc	
15.1 MHz Analog Out (+/-50kHz)		-87		dBc	
15.1 MHz Analog Out (+/- 250kHz)		-85		dBc	
15.1 MHz Analog Out (+/-1 MHz)		-83		dBc	
40.1 MHz Analog Out (+/-10kHz)		-90		dBc	
40.1 MHz Analog Out (+/- 50kHz)		-87		dBc	
40.1 MHz Analog Out (+/- 250kHz)		-84		dBc	
40.1 MHz Analog Out (+/-1 MHz)		-82		dBc	

AD9959

Maximum Clock Rise/Fall Time
 Minimum Data Setup Time (tds)
 Minimum Data Hold Time
 MISC TIMING CHARACTERISTICS

Master_Reset minimum Pulsewidth
I/O_Update minimum Pulsewidth
Minimum setup time (IO_Update to Sync_CLK)
Minimum hold time (IO_Update to Sync_CLK)
Minimum setup time (Profile inputs to Sync_CLK)
Minimum hold time (Profile inputs to Sync_CLK)
DATA LATENCY (PIPE LINE DELAY)

Matched pipe line of Freq, Phase, Amplitude
Frequency word to DAC output
Phase Offset word to DAC output
Amplitude word to DAC output
CMOS LOGIC INPUTS

V_{H}
 VIL
 Vон
 Vol

Logic 1 Current
Logic 0 Current
Input Capacitance
CMOS LOGIC OUTPUTS (1 mA Load)

POWER SUPPLY

Total Power Dissipation- all channels ON, single-tone mode
Maximum Power Dissipation- all channels, freq accumulator output multiplier ON
lavdd - All Channels ON, Single tone mode
lavdd - All Ch(s) ON, Freq accum, and output multiplier ON
Idvdd - All Ch(s) ON, Single tone mode
Idvdd - All Ch(s) ON, Freq accum, and output multiplier ON Idvdd_I/O

Power down Mode

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
DVDD_I/O (Pin 49)	4 V
AVDD, DVDD	2 V
Digital Input Voltage (DVDD_I/O = 3.3 V)	-0.7 V to +4 V
Digital Output Current	5 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Lead Temperature (10 sec Soldering) $^{\theta_{\mathrm{JA}}}$	$300^{\circ} \mathrm{C}$
θ_{JC}	$21^{\circ} \mathrm{C} / \mathrm{W}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1 Equivalent input and output circuits

PRODUCT OVERVIEW

The AD9959 consists of four independently programmable DDS channels. The AD9959 features independent frequency, phase, and amplitude control of each channel; this allows for the correction of imbalances due to analog processing such as filtering, amplification, or PCB layout related mismatches. The AD9959 supports frequency sweeping for radar and instrumentation applications. Since all four channels share a common system clock, they are inherently synchronized. If more than four channels are required, synchronizing multiple AD9959s is a simple task.

The AD9959 uses advanced DDS technology which provides low power dissipation with high performance. The device incorporates four integrated high speed 10-bit DACs with excellent wideband and narrowband SFDR. Each DDS has a 32bit frequency tuning word, 14 -bits of phase offset, and a 10 -bit output scale multiplier.

Each DAC has it own programmable reference to enable a different full scale current for each channel.

Each DDS acts as a high resolution frequency divider with the REF_{-} CLK as the input and the DAC providing the output. The REF_CLK input source is common to all DDS channels, and can be driven directly, or used in combination with an integrated REF_CLK multiplier (using a PLL) up to a maximum of 500 MSPS. The REF_ CLK multiplication factor is programmable from 4 to 20, in integer steps. The REF_CLK input features an oscillator which supports either a crystal as a source, or may be bypassed. The crystal frequency must be between 20 MHz and 30 MHz . The crystal can be used with or without the REF_CLK multiplier.

The DAC outputs are supply referenced and must be terminated into AVDD by a resistor, or an AVDD center-tapped transformer.

The AD9959 comes in a space-saving 56-lead LFCSP package. The DDS core (AVDD and DVDD pins) must be powered by a 1.8 V supply. The digital I/O interface (SPI) operates at 3.3 V and requires that the pin labeled "DVDD_I/O" (pin 49) be connected to 3.3V.

The AD9959 operates over the industrial temperature range of -40 C to +85

PIN CONFIGURATION

Notes:

1) The exposed EPAD on bottom side of package is an electrical connection and must be soldered to ground.
2) Pin 49 is DVDD_IO and is tied to 3.3 V .

AD9959

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	I/O	Description
1	SYNC_IN	1	Used to synchronize multiple AD9959s. Connect to the SYNC_OUT pin of the master AD9959.
2	SYNC_OUT	0	Used to synchronize multiple AD9959s. Connect to the SYNC_IN pin of the slave AD9959.
3	MASTER_RESET	1	Active high reset pin. Asserting the RESET pin forces the AD9959's internal registers to their default state, as described in the serial I/O port register map section in this document.
4	PWR_DWN_CTL	1	External Power-Down Control.
$\begin{aligned} & 5,7,11,15,19,21 \\ & 26,31,33,37,39 \end{aligned}$	AVDD	1	Analog Power Supply Pins (1.8V).
$\begin{aligned} & \text { 6,10,12,16,18,20 } \\ & 25,28,32,34,38 \end{aligned}$	AGND	1	Analog Ground Pins.
45, 55	DVDD	1	Digital Power Supply Pins (1.8 V).
44,56	DGND	1	Digital Power Ground Pins.
8	CH2_IOUT	0	True DAC Output. Terminate into AVDD.
9	CH2_IOUT	0	Complementary DAC Output. Terminate into AVDD.
13	CH3_IOUT	0	True DAC Output. Terminate into AVDD.
14	CH3_IOUT	0	Complementary DAC Output. Terminate into AVDD.
17	DAC_RSET	1	Establishes the reference current for all DACs. A $1.962 \mathrm{k} \Omega$ resistor (nominal) is connected from pin 17 to AGND.
22	$\overline{\text { OSC }} / \overline{\text { REF_CLK }}$	1	Complementary Reference Clock/Oscillator Input. When the REF_CLK is operated in singleended mode, this pin should be decoupled to AVDD or AGND with a $0.1 \mu \mathrm{~F}$ capacitor.
23	OSC / REF_CLK	1	Reference Clock/Oscillator Input. When the REF_CLK is operated in single-ended mode, this is the input.
24	CLK_MODE_SEL	1	Control Pin for the Oscillator Section. When high (1.8V), the oscillator section is enabled to accept a crystal as the REFCLK source. When low, the oscillator section is bypassed. CAUTION: Do not drive this pin beyond 1.8 V .
27	LOOP_FILTER	1	Connect to the external zero compensation network of the PLL loop filter for the REFCLK multiplier. For a $20 x$ multiplier value the network should be a $1.2 \mathrm{k} \Omega$ resistor in series with a 1.2 nF capacitor tied to AVDD.
29	CH0_IOUT	0	Complementary DAC Output. Terminate into AVDD.
30	CH0_IOUT	0	True DAC Output. Terminate into AVDD.
35	CH1_IOUT	0	Complementary DAC Output. Terminate into AVDD.
36	CH1_IOUT	0	True DAC Output. Terminate into AVDD.
$\begin{aligned} & 40,41, \\ & 42,43 \end{aligned}$	$\begin{aligned} & \text { PSO, PS1, } \\ & \text { PS2, PS3 } \end{aligned}$	1	These Pins are synchronous to the SYNC_CLK (pin 54). Any change in Profile inputs transfers the contents of the internal buffer memory to the I/O active registers (same as an external I/O UPDATE).
46	I/O_UPDATE	1	A rising edge detected on this pin transfers data from serial port buffer to active registers.
47	$\overline{C S}$	1	Active low chip select allowing multiple devices to share a common I/O bus (SPI).
48	SCLK	1	Serial data clock for I/O operations. Data bits are written on rising edge of SCLK and read on the falling edge of SCLK.
49	DVDD_I/O	1	3.3 V Digital Power Supply for SPI port and I/O (excluding CLK_MODE_SEL).
50,51	SDIO_0, SDIO_1	1/O	These data pins have multiple functions. Data I/O pins for the serial I/O port operation. They
52,53	SDIO_2, SDIO_3		are also used as data pins in modulation modes.
54	SYNC_CLK	0	I/O_UPDATE and Profile signals should meet the set-up and hold requirements with respect to this signal in order to guarantee a fixed pipeline delay of data to DAC outputs.

56-Lead Lead Frame Chip Scale Package [LFCSP]

$8 \times 8 \mathrm{~mm}$ Body
(CP-56)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
 degradation or loss of functionality.

